

Potential to Emit NATURAL GAS FIRED OVENS CALCULATION WORKSHEET

Company Name:	Name of Person completing form:		

Oven Information						
A. Number of Ovens:						
B. Heat Input Capacity of Each Oven (Btu/hr):						
1.	Btu/hr	4.	Btu/hr	7.	Btu/hr	
2.	Btu/hr	5.	Btu/hr	8.	Btu/hr	
3.	Btu/hr	6.	Btu/hr	9.	Btu/hr	
C. Total Heat Input Capacity of All Ovens (Btu/hr):		D. Natural Gas Usa (C) x (1 ft ³ /1,0	-	ft³/hr		

Potential to Emit	
E. Potential to Emit NOx (D) x (100 lbs NOx/1,000,000 ft ³) x (8,760 hrs/yr) x (1 ton/2,000 lbs) =	Tons NOx/yr
F. Potential to Emit CO: (D) x (84 lbs CO/1,000,000 ft ³) x (8,760 hrs/yr) x (1 ton/2,000 lbs) =	Tons CO/yr
G. Potential to Emit PM: (D) x (7.6 lbs PM/1,000,000 ft ³) x (8,760 hrs/yr) x (1 ton/2,000 lbs) =	Tons PM/yr
H. Potential to Emit SO_2 : (D) x (0.6 lbs $SO_2/1,000,000 \text{ ft}^3$) x (8,760 hrs/yr) x (1 ton/2,000 lbs) =	Tons SO₂/yr
I. Potential to Emit VOC: (D) x (5.5 lbs VOC/1,000,000 ft ³) x (8,760 hrs/yr) x (1 ton/2,000 lbs) =	Tons VOC/yr

Potential to Emit NATURAL GAS FIRED OVENS CALCULATION WORKSHEET

Company Name:	Name of Person completing form:
Sample Corporation	Joseph Sample

Oven Information				
A. Number of Ovens:	3			
B. Heat Input Capacity of Each Oven (Btu/hr):				
1. 500,000 Btu/hr	4.	Btu/hr	7.	Btu/hr
2. 2,000,000 Btu/hr	5.	Btu/hr	8.	Btu/hr
3. 2,000,000 Btu/hr	6.	Btu/hr	9.	Btu/hr
C. Total Heat Input Capacity of All Ovens (Btu/hr): 4,	500,000	D. Natural Gas Usage Rate (C) x (1 ft ³ /1,020 Btu)		4,411.76 ft ³ /hr

Po	Potential to Emit			
E.	Potential to Emit NOx (D) x (100 lbs NOx/1,000,000 ft ³) x (8,760 hrs/yr) x (1 ton/2,000 lbs) =	1.93 Tons NOx/yr		
F.	Potential to Emit CO: (D) x (84 lbs CO/1,000,000 ft ³) x (8,760 hrs/yr) x (1 ton/2,000 lbs) =	1.62 Tons CO/yr		
G.	Potential to Emit PM: (D) x $(7.6 \text{ lbs PM}/1,000,000 \text{ ft}^3)$ x $(8,760 \text{ hrs/yr})$ x $(1 \text{ ton/2},000 \text{ lbs})$ =	0.15 Tons PM/yr		
H.	Potential to Emit SO_2 : (D) x (0.6 lbs $SO_2/1,000,000 \text{ ft}^3$) x (8,760 hrs/yr) x (1 ton/2,000 lbs) =	0.01 Tons SO₂/yr		
I.	Potential to Emit VOC: (D) x (5.5 lbs VOC/1,000,000 ft ³) x (8,760 hrs/yr) x (1 ton/2,000 lbs) =	0.11 Tons VOC/yr		